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Abstract

The principal resonance of a van der Pol–Duffing oscillator subject to narrowband random excitations
has been studied. By introducing a new expansion parameter e ¼ eð%e; u0Þ the method of multiple scales is
adapted for the strongly non-linear system. The behavior of steady state responses, together with their
stability, and the effects of system damping and the detuning, and magnitude of the random excitation on
steady state responses are analyzed in detail. Theoretical analyses are verified by some numerical results. It
is found that when the random noise intensity increases, the steady state solution may change form a limit
cycle to a diffused limit cycle, and the system may have two different stable steady state solutions for the
same excitation under certain conditions. The results obtained for the strongly non-linear oscillator
complement previous results in the literature for weakly non-linear systems.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The study on the response of non-linear systems to narrowband random excitations is of great
importance. For example, the excitation of a secondary system would be a narrowband random
process if the primary system could be modelled as a single-degree-of-freedom system with light
damping subject to wide-band excitations. In the theory of non-linear random vibration, most
results obtained so far are attributed to the response of non-linear oscillators to wide-band
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random excitations, while results of the effect of narrowband excitations on non-linear oscillators
are quite limited.

Some researchers have used the equivalent linearization method [1–7], or the quasi-static
method [8,9], or the stochastic averaging method [10], or the path integral method [11], or the
digital simulation method [12–13], to study the response of a single-degree-of-freedom weakly
non-linear system subject to narrowband random excitations [1–13]. However, the response of a
strongly non-linear system to a narrowband excitation has not been studied. In this paper, the
principal resonance of a strongly non-linear van der Pol–Duffing oscillator under narrowband
random excitations is studied. Theoretical and numerical results show that when the random noise
intensity increases, the steady state solution may change from a limit cycle to a diffused limit cycle,
and under certain conditions the non-linear system may have two different steady state solutions
for the same random excitation.

2. General analysis

Considering a van der Pol–Duffing oscillator subject to a random excitation

.u þ 2%eb ’u þ u þ %ea1u3 þ %ea2 ’u2u ¼ 2%exðtÞ; ð1Þ

where dot indicates differentiation with respect to time t, the positive parameter %e may be ‘‘small’’
or not, b is the damping coefficient, a1 and a2 represent the intensity of the non-linear terms, and
xðtÞ is a random process governed by the following equation [14]:

xðtÞ ¼ h cosfðtÞ; ’fðtÞ ¼ Oþ g ’WðtÞ: ð2Þ

Thus, the external dynamic force xðtÞ is modelled by a cosine function with deterministic
amplitude h and a random phase angle fðtÞ; whose rotation speed is expressed by a constant O
superimposed by white noise ’WðtÞ with intensity g: According to Wedig [14], the power spectrum
SxðoÞ of xðtÞ is

SxðoÞ ¼
1

2

h2g2ðO2 þ o2 þ g4=4Þ

ðO2 � o2 þ g4=4Þ2 þ o2g4
: ð3Þ

From Eq. (3) one can see that the generalized fluctuation model (2) covers both two extreme
limiting cases. Obviously, for one extreme limiting case, g-0; the fluctuation spectrum SxðoÞ is
vanishing over the entire frequency range except at the singular frequency o ¼ 7O; where
Sxð7OÞ goes to infinity. This is a typical spectrum for narrowband random noise. Besides, it is
worthwhile mentioning that a second order filtered white-noise model, usually used to describe
narrowband random processes, possess two main disadvantages compared with the generalized
fluctuation model (2). The former model needs two state variables and a certain transient time for
reaching the stationary behavior. In this paper only the case for small g is discussed, so xðtÞ is
bound to narrowband random noise.

A van der Pol–Duffing oscillator is a typical model in non-linear analysis. It has been shown by
Dowell [15] and Holmes and Rand [16] that this model may represent the motion of a thin panel
under supersonic airflow. This model may also describe the dynamics of a single-model laser with
a saturable absorber as pointed out by Velarde and Antoranz [17]. Furthermore, according to

ARTICLE IN PRESS

H.W. Rong et al. / Journal of Sound and Vibration 266 (2003) 875–887876



Knobloch and Proctor [18], this model is suitable for describing the evolution of the dominant
velocity mode in an overstable convection when the frequency of oscillation is low. Rajan and
Davies [19], Nayfeh and Serhan [20], and the authors of Refs. [21,22] studied the weakly non-
linear cases for %e51 by the method of multiple scales [23]. However, when %e is not small, the
response problem of system (1) subject to narrowband excitations has not been studied. And at
times there are situations of ‘‘strongly non-linear’’ systems, in which %e is not small, or %exðtÞ is not
small. This paper is devoted to developing a variation of multiple scales method applicable to
‘‘strongly non-linear’’ systems.

3. A modified method of multiple scales

While studying deterministic responses in a strongly non-linear system, Burton [24] suggested a
modified version of perturbation technique. Now we put forward his idea to deal with random
responses in a strongly non-linear van der Pol–Duffing system. Different from the conventional
version, the modified one defines a new expansion parameter e ¼ eð%e; u0Þ; and introduces the
detuning parameter s into the expression for O2; rather than for O: Then, the first step is to
redefine the time by introducing T ¼ Ot; so that Eq. (1) can be rewritten as

O2 .u þ 2%ebO ’u þ u þ %ea1u3 þ %ea2O2 ’u2u ¼ 2%exðTÞ; ð4Þ

where dot indicates the differentiation with respect to ‘‘time’’ T. This step accommodates the O2 in
the inertia term in Eq. (4). Now we may expect the fundamental harmonic in a steady state
response having the amplitude u0; for g ¼ 0: And a new expansion parameter e ¼ eð%e; u0Þ may be
defined by u0 along with %e as follows:

e ¼
%eu2

0

4þ 3%eu2
0

: ð5Þ

It is obvious that eo1
3 for all %eu

2
0: In a weakly non-linear case the limit for which %eu2

0-0; then we
have e-1

4%eu
2
0: Therefore, e is a small parameter no matter whether %e is small or large. In terms of e

the original parameter %e is given by

%e ¼
4e

u2
0ð1� 3eÞ

: ð6Þ

The detuning parameter s is now introduced into the expression for O2 as follows:

O2 ¼
1þ se
1� 3e

: ð7Þ

By Eqs. (2), (5) and (6), Eq. (4) can be rewritten as follows:

ð1þ seÞ .u þ 2me ’u þ u þ e
4

u2
0

ða1u3 þ ea2O2 ’u2uÞ � 3u

� �

¼
4e
u2
0

2h cosðT þ gW ðTÞÞ; ð8Þ
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where the damping coefficient has been redefined as m ¼ 4bO=u2
0: The next step is to put the

Eq. (8) into non-dimensional form by letting v ¼ u=u0; then we have

ð1þ seÞ.v þ 2me’v þ v þ e½4ða1v3 þ a2O2 ’v2vÞ � 3v�

¼
8e
u3
0

h cosðT þ gW ðTÞÞ; ð9Þ

where presumably v ¼ Oð1Þ at most. It must be noted that by the above construction the
amplitude of the fundamental harmonic of a steady state response v must be unity, for g ¼ 0:

From now on the usual steps in the method of multiple scales can be further applied. Then, we
look for a uniformly approximate solution of Eq. (9) in the form

vðT ; eÞ ¼ v0ðT0;T1Þ þ ev1ðT0;T1Þ þ?; ð10Þ

where T0 ¼ T ; T1 ¼ eT are the fast and the slow time scales, respectively.
By denoting D0 ¼ @=@T0; D1 ¼ @=@T1 the ordinary-time derivatives can be transformed into

partial derivatives as

d

dT
¼ D0 þ eD1 þ?;

d2

dT2
¼ D2

0 þ 2eD0D1 þ?: ð11Þ

By substituting Eqs. (10) and (11) into Eq. (9) and equating coefficients of e0 and e1 to zero, the
following equations can be derived:

D2
0v0 þ v0 ¼ 0; ð12Þ

D2
0v1 þ v1 ¼ � sD2

0v0 � 2D0D1v0 � 2mD0v0

� 4½a1v30 þ a2O2ðD0v0Þ
2v0� þ 3v0

þ
8h

u3
0

cosðT þ gW ðTÞÞ: ð13Þ

The general solution of Eq. (12) can be written as

v0ðT0;T1Þ ¼
a

2
eiðT0þjÞ þ c:c:; ð14Þ

where c.c. represents the complex conjugate of its preceding terms, and a and j are functions of
the slow time scale. Eq. (13) then becomes

D2
0v1 þ v1 ¼ eiðT0þjÞ sa

2
� ia0 þ aj0 � ima �

3a3

2
a1 þ

1

3
O2a2

� ��

þ
3

2
a þ

4h

u3
0

eiðgW ðT1Þ�jÞ
�

�
a3

2
ða1 � O2a2Þe3iðT0þjÞ þ c:c:; ð15Þ
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where prime stands for the derivative with respect to T1: In order to eliminate secular terms, it is
required that a and j vary in the slow time scale according to

a0 ¼ �ma �
4h

u3
0

sinðj� gW ðT1ÞÞ;

aj0 ¼ �
sa

2
�

3

2
að1� aa2Þ �

4h

u3
0

cosðj� gW ðT1ÞÞ; ð16Þ

where a ¼ a1 þ 1
3
O2a2 Once a and Z are obtained, the first order uniform expansion for the steady

state solution of Eq. (1) is given by

u ¼ aðeTÞ cosðT þ jðeTÞÞ þ OðeÞ:

4. Steady state solutions and their stability

The response of system (16) for g ¼ 0 is determined firstly. In this case Eq. (16) can be written as

a0 ¼ �ma �
4h

u3
0

sinj;

aj0 ¼ �
sa

2
�

3

2
að1� aa2Þ �

4h

u3
0

cosj: ð17Þ

Since the steady state value of a is a ¼ a0 ¼ 1; by letting a0 ¼ 0;j0 ¼ 0; a ¼ a0 ¼ 1 in Eq. (17)
the steady state solutions can be found. This leads to the following result:

m ¼ �
4h

u3
0

sin j;

s
2
þ

3

2
ð1� aÞ ¼ �

4h

u3
0

cosj: ð18Þ

Eliminating sinj and cosj from Eq. (18) yields the frequency response relation

s ¼ �3ð1� aÞ72

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h

u3
0

� �2

�m2

s
:

In terms of the actual excitation frequency O; the original parameter %e and the original damping
parameter b; the above equation can be written as follows:

O2 ¼ 1þ
3

4
%eu2

0

� �
1� 3ð1� aÞe7

8e
u2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

u0

� �2

�ðbOÞ2

s2
4

3
5: ð19Þ

ARTICLE IN PRESS

H.W. Rong et al. / Journal of Sound and Vibration 266 (2003) 875–887 879



The steady state solution of Eq. (15) is found to be

v1 ¼ 1
16
ða1 � O2a2Þe3iðT0þjÞ þ c:c:

Then the steady state solution for the original variable u is

uðtÞ ¼ u0 cosðT þ jÞ þ
eu0

8
ða1 � O2a2Þ cos 3ðT þ jÞ þ Oðe2Þ: ð20Þ

The local stability of the steady state response may be checked in the usual way. Suppose that

a ¼ a0 þ a1; j ¼ j0 þ j1; ð21Þ

where a0 ¼ 1 and j0 are the steady state value and a1 and j1 are arbitrarily small deviations from
these values. Substituting Eqs. (21) into Eq. (17) and neglecting the nontrivial terms, one obtains
the linearized variation equations for a0;j0

a01

j0
1

" #
¼

�m
sþ 3ð1� aÞ

2

�
sþ 3ð1� 3aÞ

2
�m

2
664

3
775 a1

j1

" #
: ð22Þ

The eigenvalues of the coefficient matrix in Eq. (22) are

l1;2 ¼ �m71
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½sþ 3ð1� aÞ�½sþ 3ð1� 3aÞ�

p
: ð23Þ

Therefore, the steady state response is locally stable if and only if

m2 > 1
4
½sþ 3ð1� aÞ�½sþ 3ð1� 3aÞ�: ð24Þ

The unstable region is obtained in a similar way for weak non-linear cases [23] and can be
interpreted in the same way. As long as there exist three different steady state solutions for a
certain excitation frequency O; the solution with intermediate amplitude must be unstable.

Next step is to determine the effect of the noise on the deterministic steady state motion, for
ga0: To this end, let Z ¼ j� gW ðT1Þ; then Eq. (16) can be rewritten as

a0 ¼ �ma �
4h

u3
0

sin Z;

aZ0 ¼ �
sa

2
�

3

2
að1� aa2Þ �

4h

u3
0

cos Zþ agW 0ðT1Þ: ð25Þ

However, it is difficult to solve Eq. (25) exactly, so we have to make some approximation. In the
case when g is small, i.e., xðtÞ is a narrowband random process, the perturbation method can be
used to solve Eq. (25). Let

a ¼ a0 þ a1; Z ¼ j0 þ Z1; ð26Þ
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where a0 ¼ 1 and j0 are defined by Eq. (18)and a1; Z1 are small terms. Substituting the above
equations into Eq. (25), and neglecting the non-linear terms, we obtain the linearized equations as

a0
1

Z01

" #
¼

�m
sþ 3ð1� aÞ

2

�
sþ 3ð1� 3aÞ

2
�m

2
664

3
775 a1

Z1

" #
þ

0

gW 0ðT1Þ

" #
: ð27Þ

Eq. (27) can be written as the following Ito equations:

da1 ¼ �ma1 þ
sþ 3ð1� aÞ

2
Z1

� �
dT1;

dZ1 ¼ �
sþ 3ð1� 3aÞ

2
a1 � mZ1

� �
dT1 þ g dW ðT1Þ: ð28Þ

E½a1� and E½a2
1� can be obtained by the moment method [25]. For the steady state moments, one

has

dE½a1�
dT1

¼
dE½Z1�
dT1

¼ 0:

Taking expectation on both sides of Eq. (28), one obtains

Ea1 ¼ EZ1 ¼ 0: ð29Þ

According to Ito’s rule, the second order steady state moments, Ea2
1;Ea1Z1 and EZ21 satisfy the

following equations:

dEa2
1

dT1
¼ �2mEa2

1 þ ½sþ 3ð1� aÞ�Ea1Z1;

dEa1Z1
dT1

¼ �
sþ 3ð1� 3aÞ

2
Ea2

1 � 2mEa1Z1 þ
sþ 3ð1� aÞ

2
EZ21;

dEZ21
dT1

¼ �½sþ 3ð1� 3aÞ�Ea1Z1 � 2mEZ21 þ g2: ð30Þ

For the steady state moments, we have

dEa2
1

dT1
¼

dEa1Z1
dT1

¼
dEZ21
dT1

¼ 0:
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Using the above equations and Eq. (30), one obtains

Ea2
1 ¼

½sþ 3ð1� aÞ�2

½sþ 3ð1� aÞ�½sþ 3ð1� 3aÞ� þ 4m2

g2

8m
;

Ea1Z1 ¼
sþ 3ð1� aÞ

½sþ 3ð1� aÞ�½sþ 3ð1� 3aÞ� þ 4m2

g2

2
;

EZ21 ¼
½sþ 3ð1� aÞ�½sþ 3ð1� 3aÞ� þ 8m2

½sþ 3ð1� aÞ�½sþ 3ð1� 3aÞ� þ 4m2

g2

4m
: ð31Þ

From Eqs. (31), the necessary conditions for existence of the second order moments of the
response are Ea2

1X0; EZ21X0; i.e.,

½sþ 3ð1� aÞ�½sþ 3ð1� 3aÞ� þ 4m2 > 0: ð32Þ

While the necessary and sufficient condition for the second order moments of the response being
stable is that the coefficient matrix of Eq. (30)

�2m sþ 3ð1� aÞ 0

�
sþ 3ð1� 3aÞ

2
�2m

sþ 3ð1� aÞ
2

0 �½sþ 3ð1� 3aÞ� �2m

2
6664

3
7775

must be negative definite. According to Hurwitz rule, the second order moments of the response is
stable if and only if

½sþ 3ð1� aÞ�½sþ 3ð1� 3aÞ� þ m2 > 0: ð33Þ

Condition (33) shows that not all the branches given by Eqs. (19) and (31) are stable. If there
are three branches, only the top and the bottom ones are stable and realizable, and the jump is the
occasionally switching between these two stable branches. However, if g is small enough, the
random noise g ’WðtÞ is not yet able to change the stability of these branches, i.e., there will be three
stationary displacement variances given by Eqs. (19) and (31) and among them only the largest
and the smallest ones are stable and realizable.

Combining Eqs. (26), (29) and (31), one obtains

Ea ¼ a0; Ea2 ¼ a2
0 þ Ea2

1 ¼ a2
0 þ

sþ 3ð1� aÞ
½sþ 3ð1� aÞ�½sþ 3ð1� 3aÞ� þ 4m2

g2

8m
: ð34Þ

5. Numerical simulation

For the method of numerical simulation, readers are referred to Zhu [25] and Shinozuka
[26,27]. Eq. (2) can be written as the following equations:

xðtÞ ¼ h cosðfðtÞÞ;
’fðtÞ ¼ Oþ gzðtÞ; zðtÞ ¼ ’WðtÞ: ð35Þ
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The formal derivative xðtÞ of the unit Wiener process is Gaussian white noise, which has a
uniform power spectrum and is physically unrealized. However, for numerical simulation in this
paper, the power spectrum of xðtÞ is taken as

SzðoÞ ¼
1; 0oor2O;

0; o > 2O:

(
ð36Þ

For numerical simulation it is more convenient to use the pseudo-random signal given by [25]

zðtÞ ¼

ffiffiffiffiffiffi
4O
N

r XN

k¼1

cos
O
N
ð2k � 1Þt þ jk

� �
; ð37Þ

where jk’s are mutually independent and uniformly distributed in ð0; 2p�; and N is a large integer
number.

By the center limit theorem, it can be proved [25] that when N-N; the random process xðtÞ
given by Eq. (37) will converge to an ergodic Gaussian stationary process with the same
correlation function and spectrum density given by Eq. (36) as that of the expected process.

In the numerical simulation, the parameters in systems (1) and (37) are chosen as follows:

a ¼ 1:0; N ¼ 1000; b ¼ 0:1; h ¼ 5:0:

The governing equation (1) is numerically integrated by the fourth order Runge–Kutta
algorithm, and the numerical results are shown in Figs. 1–5. When g ¼ 0; %e ¼ 0:1; the variations
of the steady state response u0 along with O are shown in Fig. 1, and the theoretical results given
by Eq. (19) are also shown in Fig. 1 for comparison. When g ¼ 0; %e ¼ 1:0; the results are shown in
Fig. 2. Both Figs. 1 and 2 show that the deterministic response predicted by the modified method
of multiple scales is in good agreement with that obtained by numerical integration. Fig. 1 is for
the weakly non-linear case when %e ¼ 0:1; while Fig. 2 is for the strongly non-linear case when

%e ¼ 1:0:
Next is to determine the effect of random noise g ’WðtÞ on the primary resonance. When %e ¼

1:0;O ¼ 4:0; g ¼ 0:01; for different initial conditions, the numerical results for Eq. (1) are shown in
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solution.
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Fig. 2. Frequency response of system (1) ð%e ¼ 1:0Þ: —, stable solution; - - -, unstable solution; J J J, numerical

solution.

Fig. 4. Numerical results of Eq. (1) ðuð0Þ ¼ �0:1; ’uð0Þ ¼ �0:5Þ: (a) Time history of uðtÞ and (b) phase plot.

Fig. 3. Numerical results of Eq. (1) ðuð0Þ ¼ �10:1; ’uð0Þ ¼ �5:5Þ: (a) Time history of uðtÞ and (b) phase plot.
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Figs. 3 and 4. The initial conditions are uð0Þ ¼ �10:1; ’uð0Þ ¼ �5:5 for Fig. 3, and uð0Þ ¼
�0:1; ’uð0Þ ¼ �0:5 for Fig. 4.

Figs. 3 and 4 show that when g is small enough, in some parameter range of O; the stationary
variances of the displacement response of system (1) may be different for different initial values.
The random noise g ’WðtÞ may change the steady state response of system (1) from a limit cycle to a
diffused limit cycle. Further numerical simulation shows that when the random noise intensity g
increases, the width of the diffused limit cycle increases, too.

When %e ¼ 1:0; g ¼ 0:01; numerical results of the variations of the steady state response with O
are shown in Fig. 5, and the theoretical results given by Eq. (34) are also shown there for
comparison.

6. Conclusions and discussion

Exact solutions of random response problems of non-linear systems up to now are only
available for a few problems. Thus, people have to resort various approximate methods to deal
with the remaining problems. In fact, the task is equally difficult even for deterministic response
problems of non-linear systems. Hence, a number of approximate methods have been developed
and widely used in the analysis of deterministic response problems of non-linear systems. For the
state-of-art in this respect, readers are referred to Nayfeh and Mook [28], Hagedorn [29], and
Nayfeh [23,30]. Actually, some of the approximate methods for deterministic response problems
of non-linear systems can be extended to random response problems. For example, the method of
multiple scales has been extended to non-linear systems under random external excitations by
Rajan and Davies [19], and Nayfeh and Serhan [20], and to non-linear systems under random
parametric excitations by the present authors [21,22]. In recent years, several researchers
successfully extended the classical perturbation methods to deterministic response problems in
certain strongly non-linear systems (see Refs. [31–34], to mention a few). This kind of modified
methods may be also extended to random response problems of non-linear systems, as shown in
this paper.

By the modified perturbation technique and multiple scale method, the principle resonance of a
van der Pol–Duffing system is reanalyzed for the large non-linearity case. Our theoretical analyses
and numerical simulations show that under a narrowband random excitation, given by Eq. (2),
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when the random noise intensity g is small enough, in some parameter range of O , the stationary
variances of the response of system (1) may be different for different initial conditions. The
random noise g ’WðtÞ may change the steady state response of system (1) from a limit cycle to a
diffused limit cycle. When the random noise intensity g increases, the width of the diffused limit
cycle will increase too. These analytical results are in accordance with the following physical
instinct. When g is small enough, the deterministic harmonic term h cosOt will still play a decisive
role in the response of system (1), so that phenomenon of multiple-valued steady state responses
can be observed within some parameter range. Nayfeh and Serhan [20] also observed the similar
phenomenon in the response of a Duffing–Rayleigh oscillator under combined deterministic and
random excitations.
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